The basics of the R statistical progamming language

[After you have read through this module, and have downloaded and worked through the provided R examples, you should be proficient enough in R to be able to download and run other R scripts that will be provided in other posts on this site. You should understand the basics of good programming practices (in any language, not just R). You will also have learned how to read data in a file into a table in R, and produce a plot.]

Contents:

Why use R for modelling?

I have programmed in many different computing and scripting languages, but the ones I most commonly use on a day to day basis are C++, Fortran, Perl, and R (with some Python, Java, and Ruby on the side).  In particular, I use R every day because it is not only a programming language, but also has graphics and a very large suite of statistical tools. Connecting models to data is a process that requires statistical tools, and R provides those tools, plus a lot more.

Unlike SAS, Stata, SPSS, and Matlab, R is free and open source (it is hard to beat a package that is more comprehensive than pretty much any other product out there and is free!).

Continue reading

Visits: 3458

Finding sources of data for computational, mathematical, or statistical modeling studies: free online data

[In this module we discuss methods for finding free sources of online data. We present examples of climate, population, and socio-economic data from a variety of online sources.  Other sources of potentially useful data are also discussed.  The data sources described here are by no means an exhaustive list of free online data that might be useful to use in a computational, statistical, or mathematical modeling study.] Continue reading

Visits: 3656

Finding sources of data: extracting data from the published literature

Connecting mathematical models to predicting reality usually involves comparing your model to data, and finding model parameters that make the model most closely match observations in data. And of course statistical models are wholly developed using sources of data.

Becoming adept at finding sources of data relevant to a model you are studying is a learned skill, but unfortunately one that isn’t taught in any textbook!

One thing to keep in mind is that any data that appears in a journal publication is fair game to use, even if it appears in graphical format only.  If the data is in graphical format, there are free programs, such as DataThief, that can be used to extract the data into a numerical file.

Continue reading

Visits: 3011

AML 610 Fall 2014: List of modules

The syllabus for this course can be found here.

The final write-ups for final group projects are due Monday, December 1st, 2014.  On Dec 2nd and 3rd students will meet with Prof Towers to receive feedback on their project and writeup.

Each of the project groups will perform an in-class 20 min presentation on Monday, Dec 8th, 2014 and Wed, Dec 10th, 2014. By Dec 9th, all group members are to submit to Prof Towers a confidential email, detailing their contribution to the group project, and detailing the contributions of the other group members.

The list of modules for the Fall 2014 course in computational and statistical methods for mathematical biologists and epidemiologists:

 

Visits: 1488